The range of a function is the set of all possible output values (y-values) that the function can produce. When we are told that the range of a function is (2, ∞), it means the following:
Definition: The range represents all the y-values that the function actually takes on. No y-value outside of this interval is ever produced by the function. See more about Definition%20of%20Range.
Interval Notation: The expression (2, ∞) is an interval notation. It specifies a set of real numbers.
Interpretation:
Therefore: The function produces y-values that are strictly greater than 2, and can be arbitrarily large. So, it means y > 2. Check about Interval%20Notation here.
Example: A function like f(x) = x<sup>2</sup> + 2, where x is any real number, has a range of [2, ∞) because the lowest value x<sup>2</sup> can take is 0, so the lowest output value is 2. However, a slight modification, such as f(x) = e<sup>x</sup> + 2 has a range of (2, ∞) because e<sup>x</sup> is always strictly greater than 0. So f(x) is strictly greater than 2. Here is more about Function%20Examples.
Finding the Range: Determining the range of a function often depends on the type of function. Common methods include:
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page